NOT IN KANSAS ANYMORE:

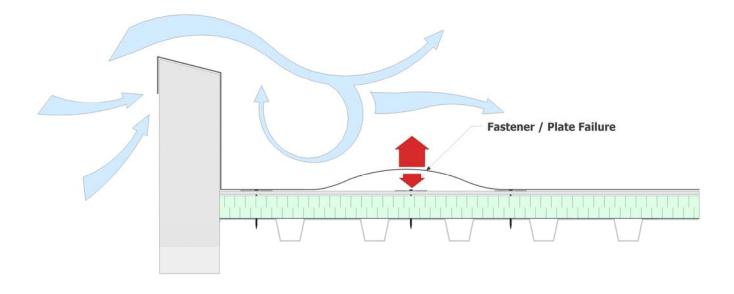
Designing Low-slope Roofs for Wind Uplift Resistance

November 14, 2018

www.rcabc.org

Not in Kansas Anymore

- Why wind matters
- Code requirements
- Designing low-slope roofs to resist wind



Why Wind Matters

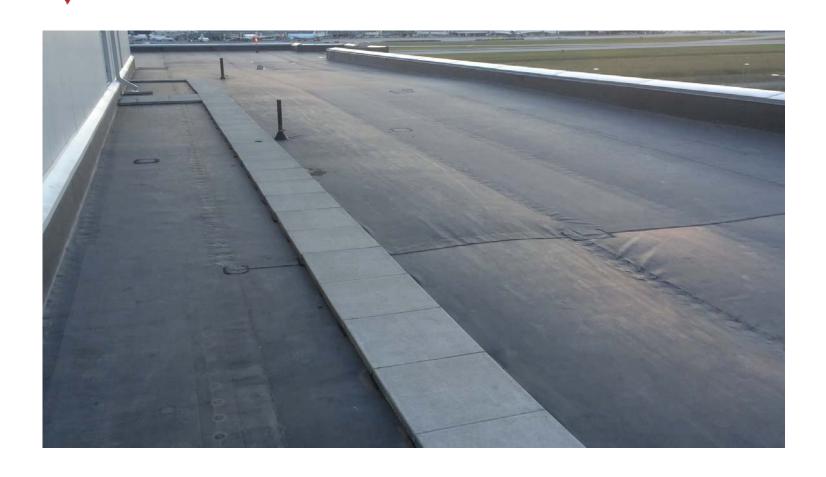
Plow winds, blowing 70 km/h, derailed this train near Waldeck, SK (2014)

Wind effect is often misunderstood

- Wind effect is often misunderstood
 - Wind does not have to get underneath an object to wreak havoc

- Wind effect is often misunderstood
 - Wind does not have to get underneath an object to wreak havoc
 - Wind strength is exponentially stronger than wind speed

- Wind effect is often misunderstood
- Wind power is often underestimated


- Wind effect is often misunderstood
- Wind power is often underestimated
- 'Flat' (low-sloped) roofs are susceptible to damage

- Wind effect is often misunderstood
- Wind power is often underestimated
- 'Flat' (low-sloped) roofs are susceptible to damage
- Light winds can generate significant damage

✓ Roofing Practices Manual

(RoofStar Guarantee Standards)

- ✓ British Columbia Building Code (2018)
- ✓ National Building Code (2015)

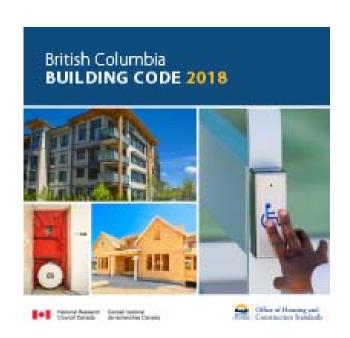
IRC

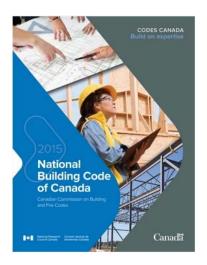
(Institute for Research in Construction)

SIGDERS

(Special Interest Group for the Dynamic Evaluation of Roofing Systems)

SIGDERS




CAN/CSA A123.21

(Standard test method for the dynamic wind uplift resistance of membrane-roofing systems)

> BCBC (2018) aligns with the NBCC

- > BCBC (2018) aligns with the NBCC
 - Design Authority responsible to calculate Specified Wind Loads

Part 4 - Structural Design

Division B: Acceptab

ant forminates 🚨 Olive

4.1.7. Wind Load

4.1.7.1. Specified Wind Load

- 1) The specified wind loads for a building and its components shall be determined using the Static, Dynamic or Wind Tunnel Procedure as stated in Sentences (2) to (5).
- 2) For the design of *buildings* that are not dynamically sensitive, as defined in Sentence 4.1.7.2.(1), one of the following procedures shall be used to determine the specified wind loads:
 - a) the Static Procedure described in Article 4.1.7.3.,
 - b) the Dynamic Procedure described in Article 4.1.7.8., or
 - c) the Wind Tunnel Procedure described in Article 4.1.7.12.
- **3)** For the design of *buildings* that are dynamically sensitive, as defined in Sentence 4.1.7.2.(2), one of the following procedures shall be used to determine the specified wind loads:
 - a) the Dynamic Procedure described in Article 4.1.7.8., or
 - b) the Wind Tunnel Procedure described in Article 4.1.7.12.
- **4)** For the design of *buildings* that may be subject to wake buffeting or channelling effects from nearby *buildings*, or that are very dynamically sensitive, as defined in Sentence 4.1.7.2.(3), the Wind Tunnel Procedure described in Article 4.1.7.12., shall be used to determine the specified wind loads.
- 5) For the design of cladding and secondary structural members, one of the following procedures shall be used to determine the specified wind loads:
 - a) the Static Procedure described in Article 4.1.7.3., or
 - b) the Wind Tunnel Procedure described in Article 4.1.7.12.
- **6)** Computational fluid dynamics shall not be used to determine the specified wind loads for a *building* and its components. (See Note A-4.1.7.1.(6).)

Division B

5.2.2.2. Determination of Wind Load

(See Note A-5.2.2.2.)

- 1) This Article applies to the determination of wind load to be used in the design of materials, comp assemblies, including their connections, that separate dissimilar environments or are exposed to the exterior, these are
 - a) subject to wind load, and
 - b) required to be designed to resist wind load.
- 2) Except as provided in Sentence (3), the wind load referred to in Sentence (1) shall be 100% of the specified wind load determined in accordance with Article 4.1.7.1.
- 3) Where it can be shown by test or analysis that a material, component, assembly or connection referred to in Sentence (1) will be subject to less than 100% of the specified wind load, the wind load referred to in Sentence (1) shall be not less than the load determined by test or analysis.
- **4)** Except as provided in Sentence (5), the wind uplift resistance of membrane roofing assemblies shall be determined in accordance with the requirements of CAN/CSA-A123.21, "Dynamic Wind Uplift Resistance of Membrane-Roofing Systems." (See Note A-5.2.2.2.(4).)
- **5)** Membrane roofing assemblies with proven past performance for the anticipated wind loads need not comply with Sentence (4). (See Note A-5.1.4.1.(5).)

5.2.2.3. Design Procedures

1) Structural design shall be carried out in accordance with Subsection 4.1.3. and other applicable requirements in Part 4.

British Columbia Building Code 2018

Division B

British Columbia
BUILDING CODE 2018

- > BCBC (2018) aligns with the NBCC
 - Design Authority responsible to calculate Specified Wind Loads
 - Roof systems must securely attach to the structure and resist Specified Wind Loads

A-5.2.2.2.(4) Membrane Roofing Systems. Wind loads for membrane roofing systems must be calculated in accordance with Part 4. The tested uplift resistance and factored load should satisfy the requirements of the Commentary entitled Limit States Design in the "User's Guide – NBC 2015, Structural Commentaries (Part 4 of Division B)."

The test method described in CAN/CSA-A123.21, "Dynamic Wind Uplift Resistance of Membrane-Roofing Systems," applies only to membrane roofing systems whose components' resistance to wind uplift is achieved by fasteners or adhesives. It does not apply to roofing systems that use ballasts, such as gravel or pavers, to secure the membrane against wind uplift.

In the case of membrane roofing systems in which the waterproof membrane is attached to the structural deck using mechanical fasteners, the wind-induced forces and the roofing system's response are time- and space-dependent and, thus, dynamic in nature. Further information on the design and evaluation of such systems can be found in "A Guide for the Wind Design of Mechanically Attached Flexible Membrane Roofs," published by NRC.

The wind uplift resistance obtained from the test method in CAN/CSA-A123.21 is limited to configurations with specific fastener or adhesive patterns. To extrapolate the test data to non-tested configurations, refer to ANSI/SPRI WD-1, "Wind Design Standard Practice for Roofing Assemblies," for a rational calculation procedure. However, in using this extrapolation procedure, wind loads should be calculated in accordance with the <u>BCBC</u>. NRC's guide for wind design referenced above provides further guidance and examples of wind load calculations.

Division B

British Columbia Building Code 2018

- > BCBC (2018) aligns with the NBCC
 - Design Authority responsible to calculate Specified Wind Loads
 - Roof systems must securely attach to the structure and resist Specified Wind Loads
 - Design Authorities may rely upon
 - Tested Assemblies

- > BCBC (2018) aligns with the NBCC
 - Design Authority responsible to calculate Specified Wind Loads
 - Roof systems must securely attach to the structure and resist Specified Wind Loads
 - Design Authorities may rely upon
 - Tested Assemblies
 - Assemblies with Proven Past Performance

- > BCBC (2018) aligns with the NBCC
 - Design Authority responsible to calculate Specified Wind Loads
 - Roof systems must securely attach to the structure and resist Specified Wind Loads
 - Design Authorities may rely upon
 - Tested Assemblies
 - Assemblies with Proven Past Performance
 - Engineered Assemblies

RoofStar Guarantee Standards

 Adopted NBCC (2015) requirements since April 2017

- Adopted NBCC (2015) requirements since April 2017
- Require compliance with BCBC

- Adopted NBCC (2015) requirements since April 2017
- Require compliance with BCBC
- Provide Design Authorities with access to library of Tested Assembly reports

- Adopted NBCC (2015) requirements since April 2017
- Require compliance with BCBC
- Provide Design Authorities with access to library of Tested Assembly reports
- Complete guidance in the RPM:
 - 3 SECURING the ROOF ASSEMBLY

Cannot be used to comply with BCBC

➤ Insurance risk-management focused standards

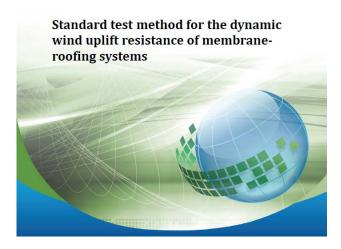
FM Global FM Global

- Incorporate a proprietary test method for wind-resistance
 - > Static rate of pressure
 - ➤ One cycle for 60 seconds

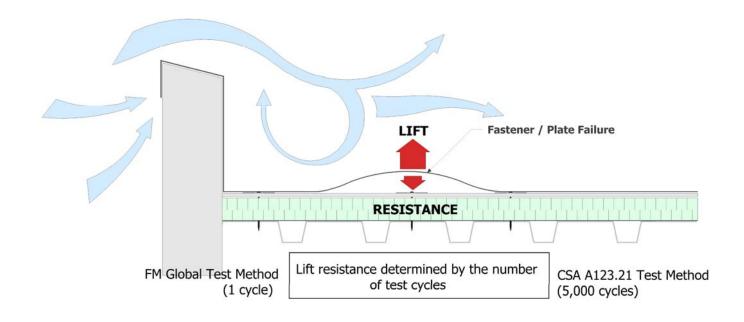
BC Building Code

- > Focused on
 - Occupant comfort
 - Energy efficiency
 - Public safety
 - Accessibility
 - Liveability

BC Building Code


- Incorporates a test method for wind-resistance (CSA A123.21)
 - dynamic (cycling) rate of pressure
 - up to five hours

A123.21-14


The so-called "FM 1-90"

focuses on Class 1 fire-resistant roofs

The so-called "FM 1-90"

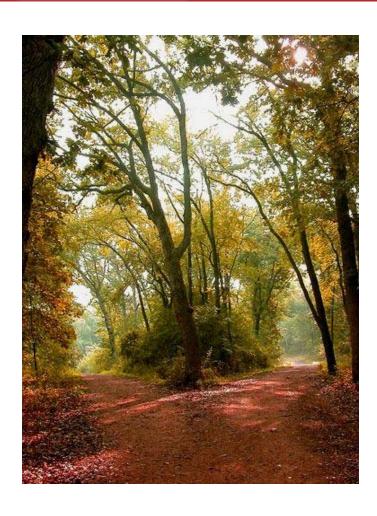
- focuses on Class 1 fire-resistant roofs
- establishes a minimum wind resistance of 90 lb/sf (static pressure; 60 seconds)

The Dynamic Roof Testing Facility, Drummondville, QC

Sample Tested Assembly report

NEMO etc.

353 Christian Street, Unit #13 Oxford, CT 06478 (203) 262-9245


ENGINEER EVALUATE TEST CONSULT CERTIFY

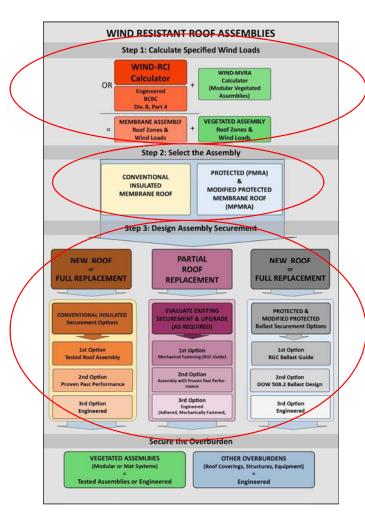
ROOF SYSTEM ASSESSMENT REPORT DYNAMIC UPLIFT RESISTANCE PER CSA A123.21			
CLIENT:	SAMPLE	TEST DATE:	2016-08-23
DOCUMENT NO.	SAMPLE	PUBLICATION DATE:	2018-02-26
TEST PANEL NO.	SAMPLE	REVISION NO.	RO
SYSTEM TYPE:	SAMPLE	REEVALUATION DATE:	2021-02-26

PAR	TIALLY ADHERED ROOFING SYSTEM (PA	ARS) SUMMARY
PERFORMANCE⇒	PASSING PRESSURE	WIND UPLIFT RESISTANCE (with SF of 1.5)
	4.6 kPa (96 psf)	3.1 kPa (64 psf)

Choosing a Design Path:

Roofs that resist wind uplift

> Three steps:

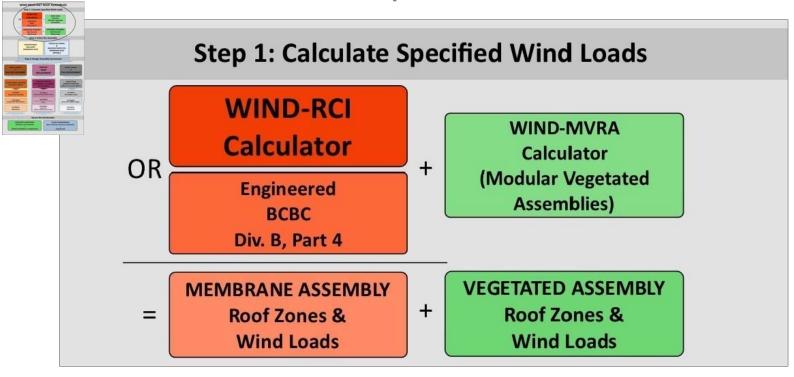

- > Three steps:
 - STEP 1: Calculate Specified Wind Loads

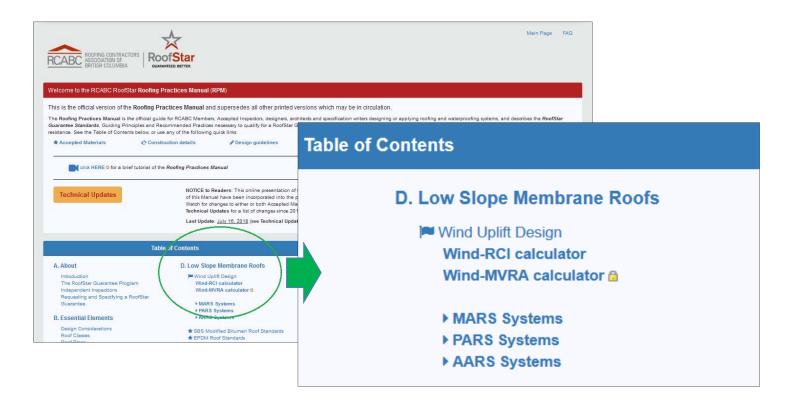
- > Three steps:
 - STEP 1: Calculate Specified Wind Loads
 - STEP 2: Choose the roof assembly type

- > Three steps:
 - STEP 1: Calculate Specified Wind Loads
 - STEP 2: Choose the roof assembly type
 - STEP 3: Design assembly securement

The Design Path

Step 1


Step 2


Step 3

Securing overburden

STEP 1: Calculate Specified Wind Loads

Wind-RCI online calculator

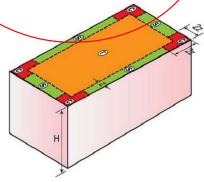
Wind-RCI Report

Building parameters

Building location: Vancouver Region, Burnaby (Simon Fraser Univ.), British Columbia

Building geometry:

- High Rise
- Height (reference height): 70 ft (21 m)
- Width (smaller plan dimension): 70 ft (21 m)
- Length: 150 ft (46 m)
- Does the building have parapet higher than 3.28 ft(1m): No


ilding exposure: Open

Building openings: Category 1

Building importance: Normal

Wind loads for roof cladding

Roof area	Wind load
End zone width, Z	15 ft (4.6 m)
Corner, ©	-92 psf (-4.4 kPa)
Edge, ®	-60 psf (-2.9 kPa)
Field,	-40 psf (-1.9 kPa)

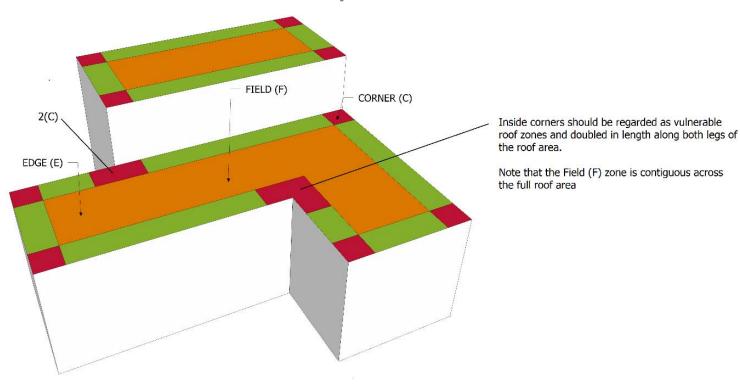
(Conversion Unit: 1 ft = 0.3048 m, 1 psf = 47.88 Pa, $1lb/ft^2 = 4.8824 \text{ kg/m}^2$)

Wind-RCI Report

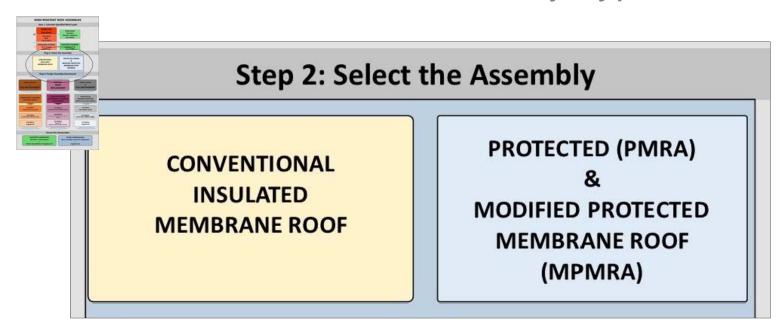
Roof area	Wind load
End zone width, Z	15 ft (4.6 m)
Corner, ©	-92 psf (-4.4 kPa)
Edge,	-60 psf (-2.9 kPa)
Field,	-40 psf (-1.9 kPa)

Roof Zones

Three roof zones:

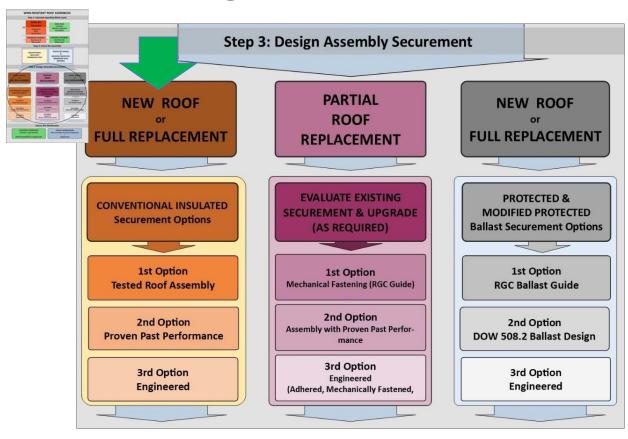

- Field
- Edge
- Corners

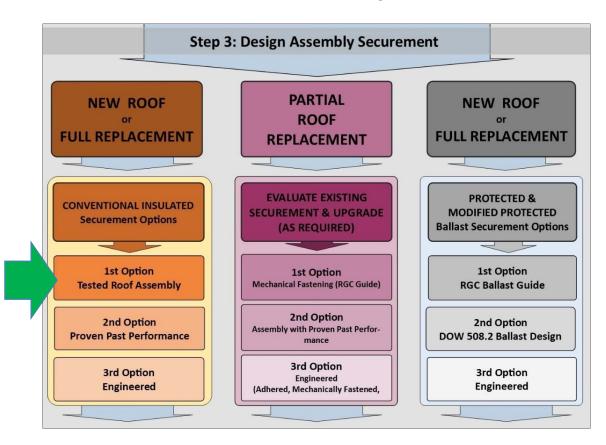
The Corner dimensions are always a function of the Edge width.

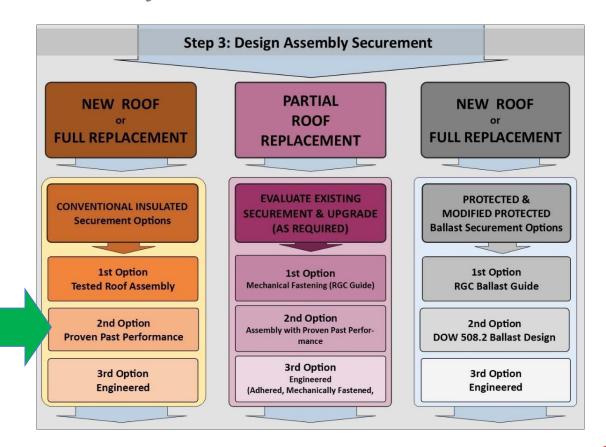

When structures exceed 21.3 m (70') in height, Corners double in size (2E).

Roof Zones for Multiple Levels

STEP 2: Choose an Assembly Type


Conventionally Insulated


Protected or Modified Protected


STEP 3: Design Roof Securement

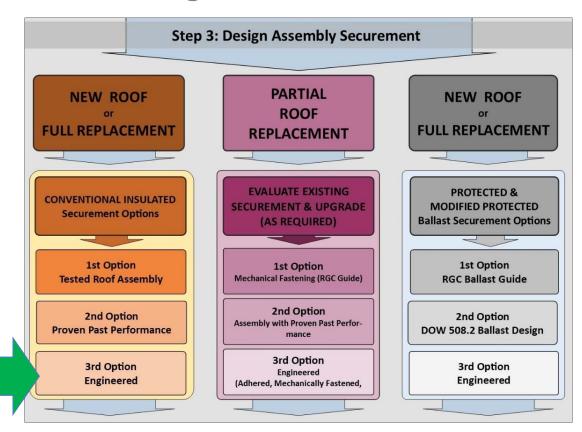
Option 1:Tested Assembly

Option 2: System with Proven Performance

Option 2: Proven Past Performance

➤ An acceptable alternative to Tested Assembly

- ➤ An acceptable alternative to Tested Assembly
- Use RoofStar Accepted Materials


- An acceptable alternative to Tested Assembly
- Use RoofStar Accepted Materials
- System has a proven track record of wind uplift resistance

- An acceptable alternative to Tested Assembly
- Use RoofStar Accepted Materials
- System has a proven track record of wind uplift resistance
 - For at least as long as the expected life of the roof assembly

- An acceptable alternative to Tested Assembly
- Use RoofStar Accepted Materials
- System has a proven track record of wind uplift resistance
 - For at least as long as the expected life of the roof assembly
 - For buildings, and in conditions, that are reasonably representative of the Project

Option 3: Engineered Securement

Option 3: Custom-engineered Securement

Another acceptable option

Option 3: Custom-engineered Securement

- Another acceptable option
- Applicable to buildings that don't conform to the Wind-RCI modeling parameters

Option 3: Custom-engineered Securement

- Another acceptable option
- Applicable to buildings that don't conform to the Wind-RCI modeling parameters
- Useful when a Tested Assembly or an assembly with Proven Past Performance isn't available

Option 1:Tested Assembly

Building parameters

Building location: Vancouver Region, Burnaby (Simon Fraser Univ.), British Columbia

Building geometry:

- High Rise
- Height (reference height): 70 ft (21 m)
- Width (smaller plan dimension): 70 ft (21 m)
- Length: 150 ft (46 m)
- . Does the building have parapet higher than 3.28 ft(1m): No

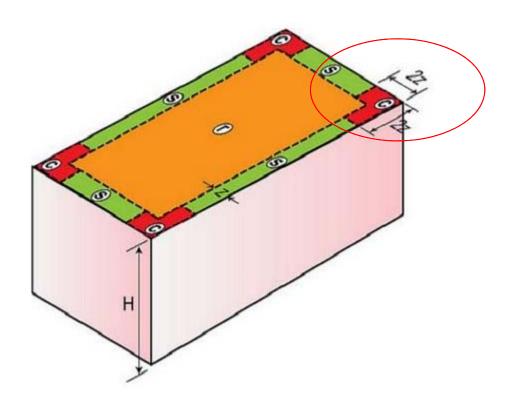
Building exposure: Open

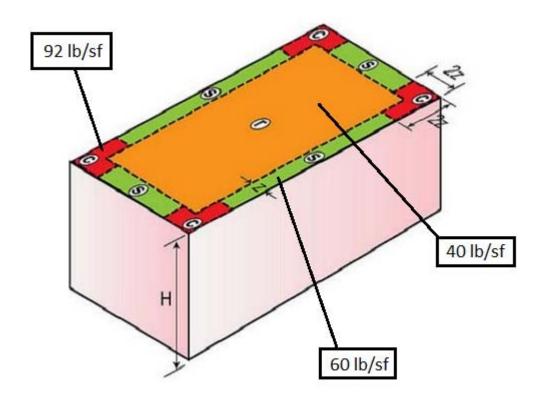
Building openings: Category 1 **Building importance:** Normal

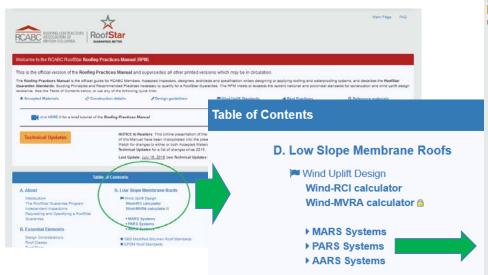
Roof area	Wind load
End zone width, Z	15 ft (4.6 m)
Corner, ©	-92 psf (-4.4 kPa)
Edge, ®	-60 psf (-2.9 kPa)
Field,	-40 psf (-1.9 kPa)

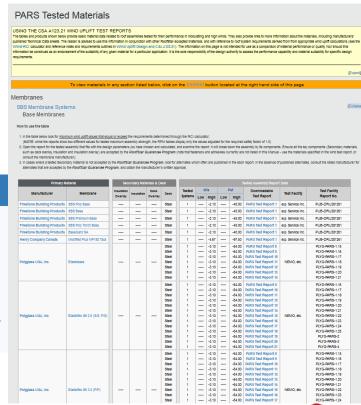
Option 1:Tested Assembly

Roof area	Wind load
End zone width, Z	15 ft (4.6 m)
Corner, ©	-92 psf (-4.4 kPa)
Edge, ®	-60 psf (-2.9 kPa)
Field, ©	-40 psf (-1.9 kPa)




Option 1:Tested Assembly


Roof area	Wind load
End zone width, Z	15 ft (4.6 m)
Corner, ©	-92 psf (-4.4 kPa)
Edge, ®	-60 psf (-2.9 kPa)
Field,	-40 psf (-1.9 kPa)

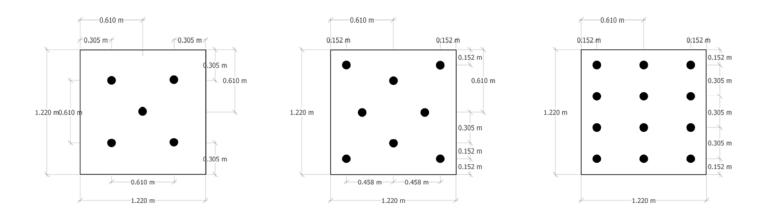


Option 1:Tested Assembly

					Steel	1		-3.10		-64.00	PARS Test Report 6		PLYG-PARS-1.13
					Steel	1		-3.10		-64.00	PAR'S Test Report 7		PLYG-PARS-1.14
					Steel	1		-2.23	_	-46.67	PAR'S Test Report 3	Intertek	E9988.03-109-44
					Steel	1		-3.35		-70.00	PARS Test Report 4	Intertek	E9988.05-109-44
MANUFACTURER	PRODUCT				Steel	1		-2.87		-60.00	PARS Test Report 5	Intertek	E9988.06-109-44
					Steel	1		-2.90		-60.00	PARS Test Report 8	exp. Service inc.	SIPZ-DRS-00215482-01-5100
					Plywood	1		-1.40		-30.00	PAR'S Test Report 2	Intertek	E998.02-109-44
MANUFACTURER	PRODUCT				Steel	1		-1.80		-37.00	PARS Test Report 6	exp. Service Inc.	SIPZ-DRS-00221706-02-5100
manul actures	11000001			_	Steel	1		-2.86		-60.00	PARS Test Report 7	exp. Service Inc.	SIPZ-DRS-00221706-01-5100
					Steel	1		-1.46		-30.00	PAR'S Test Report 9	exp. Service inc.	SIPZ-DRS-00221706-03-5100
MANUFACTURER	PRODUCT				Steel	1		-1.90		-40.00	PAR'S Test Report 1	Intertek	E9988.01-109-44
					Steel	1		-2.90		-60.00	PARS Test Report 2		PUB-DRU293332
MANUFACTURER	PRODUCT				Steel	4	-1.40	-3.40	-30.00	-70.00	PARS Test Report 3	exp. Service inc.	PUB-DRU304337
					Steel	3	-2.10	-5.00	-45.00	-105.00	PARS Test Report 5		PUB-DRU293389
MANUFACTURER	PRODUCT				Steel	3	-1.40	-2.80	-30.00	-58.00	PAR'S Test Report 1	exp. Service Inc.	PUB-DRU305544
					Steel	1		-2.90		-60.00	PARS Test Report 2	exp. Service Inc.	PUB-DRU293332
MANUFACTURER	PRODUCT				Steel	4	-1.40	-3.40	-30.00	-70.00	PARS Test Report 3	exp. Service inc.	PUB-DRU304337
					Steel	1		-2.90		-60.00	PARS Test Report 2		PUB-DRU293332
MANUFACTURER	PRODUCT				Steel	4	-1.40	-3.40	-30.00	-70.00	PARS Test Report 3	exp. Service Inc.	PUB-DRU304337
					Steel	3	-2.10	-5.00	-45.00	-105.00	PARS Test Report 5		PUB-DRU293389
MANUFACTURER					Steel	1		-2.90		-60.00	PAR \$ Test Report 2		PUB-DRU293332
	PRODUCT				Steel	4	-1.40	-3.40	-30.00	-70.00	PARS Test Report 3	exp. Service inc.	PUB-DRU304337
					Steel	3	-2.10	-5.00	-45.00	-105.00	PARS Test Report 5		PUB-DRU293389

			Steel	1			-3.10		-64.00	PAR'S Test Report 6		PLYG-PARS-1.13
			Steel	1			-3.10		-64.00	PAR'S Test Report 7		PLYG-PARS-1.14
			Steel	1	1		-2.23		-46.67	PARS Test Report 3	Intertek	E9988.03-109-44
			Steel	1			-3.35		-70.00	PARS Test Report 4	Intertek	E9988.05-109-44
MANUFACTURER	PRODUCT	 	 Steel	1			-2.87		-60.00	PARS Test Report 5	Intertek	E9988.06-109-44
			Steel	1			-2.90		-60.00	PARS Test Report 8	exp. Service Inc.	SIPZ-DRS-00215482-01-5100
			Plywood	1			-1:40	_	-30.00	PARS Test Report 2	Intertek	E998.02-109-44
MANUFACTURER	PRODUCT		 Steel	1		-/	-1.80		-37.00	PARS Test Report 6	exp. Service Inc.	SIPZ-DRS-00221706-02-5100
MANUFACTURER	PRODUCT	 	 Steel	1		+	-2.86		-60.00	PARS Test Report 7	exp. Service Inc.	SIPZ-DRS-00221706-01-5100
			Steel	1	١	/—	-1.46	-	-30.00	PARS Test Report 9	exp. Service Inc.	SIPZ-DRS-00221706-03-5100
MANUFACTURER	PRODUCT	 	 Steel	1	· /		-1.90		-40.00	PARS Test Report 1	Intertek	E9988.01-109-44
			Steel	1	7		-2.90		-60.00	PAR'S Test Report 2		PUB-DRU293332
MANUFACTURER	PRODUCT	 	 Steel	4	ı/	-1.40	-3.40	-30.00	-70.00	PARS Test Report 3	exp. Service Inc.	PUB-DRU304337
			Steel	3		-2.10	-5.00	-45.00	-105.00	PARS Test Report 5	-	PUB-DRU293389
MANUFACTURER	PRODUCT	 	 Steel	1		-1.40	-2.80	-30.00	-58.00	PARS Test Report 1	exp. Service Inc.	PUB-DRU305544
			Steel				-2.90		-60.00	PAR'S Test Report 2	0	PUB-DRU293332
MANUFACTURER	PRODUCT	 	 Steel			-1.40	-3.40	-30.00	-70.00	PAR'S Test Report 3	exp. Service Inc.	PUB-DRU304337
			Steel				-2.90		-60.00	PARS Test Report 2		PUB-DRU293332
MANUFACTURER	PRODUCT	 	 Steel	4		-1.40	-3.40	-30.00	-70.00	PARS Test Report 3	exp. Service Inc.	PUB-DRU304337
			Steel	3	1	-2.10	-5.00	-45.00	-105.00	PARS Test Report 5		PUB-DRU293389
			Steel	1	T	_	-2.90		-60.00	FARS Test Report 2		PUB-DRU293332
MANUFACTURER	PRODUCT	 	 Steel	4	: \	-1.40	-3.40	-30.00	-70.00	PAR'S Test Report 3	exp. Service Inc.	PUB-DRU304337
			Steel	3	· \	-2.10	-5.00	-45.00	-105.00	PARS Test Report 5		PUB-DRU293389

1 Tested System		-2.90		-60.00	Steel	PARS Test Report 2
4 Tested Systems	-1.40	-3.40	-30.00	-70.00	Steel	PARS Test Report 3
3 Tested Systems	-2.10	-5.00	-45.00	(-105.00	Steel	PARS Test Report 5


Option 1:Tested Assembly

- Dynamic Uplift Resistance (DUR)as per CSA A123.21:

)	
Description	Test observation reading	With SF of 1.5
System A	-3.2 kPa (-67 psf)	-2.1 kPa(-45 psf)
System B	-5.4 kPa (-112 psf)	-3.6 kPa (-75 psf)
System C	-7.5 kPa (-157 psf)	-5.0 kPa (-105 psf)

Option 1:Tested Assembly

Fastening patterns from a published Tested Assembly report, illustrating three securement systems

What about partial roof replacements?

The Design Authority still must calculate Specified Wind Loads

- The Design Authority still must calculate Specified Wind Loads
- Mechanical fastening is always the best approach

- The Design Authority still must calculate Specified Wind Loads
- Mechanical fastening is always the best approach
 - Use proven fastener numbers and patterns in the RPM

- The Design Authority still must calculate Specified Wind Loads
- Mechanical fastening is always the best approach
 - Use proven fastener numbers and patterns in the RPM
 - When mechanical fastening is not an option,
 - custom-engineer the roof securement, or
 - use a system with Proven Past Performance

And how about Protected roofs?

And how about Protected roofs?

➤ Calculate Specified Wind Loads

And how about Protected roofs?

- Calculate Specified Wind Loads
- Consult ballast guides for appropriate ballast coverings:
 - RGC Ballast Guide
 - DOW 508.2 Ballast Design Guide
 - Custom-engineered securement

> Why wind matters

- > Why wind matters
 - An underestimated, underappreciated force of nature

- Why wind matters
 - An underestimated, underappreciated force of nature
 - Capable of damaging or destroying entire roofs

- Why wind matters
 - An underestimated, underappreciated force of nature
 - Capable of damaging or destroying entire roofs
 - Can render a building unsafe and vulnerable to water

> Why wind matters

- > Why wind matters
- Code requirements

- Why wind matters
- > Code requirements
 - BCBC now requires roofs designed and built to resist Specified Wind Loads

- Why wind matters
- Code requirements
 - BCBC now requires roofs designed and built to resist Specified Wind Loads
 - FM Global standards don't apply and cannot be used to comply with BCBC

- Why wind matters
- Code requirements
 - BCBC now requires roofs designed and built to resist Specified Wind Loads
 - FM Global standards don't apply and cannot be used to comply with BCBC
 - RCABC's RPM provides guidance for complying with BCBC

- > Why wind matters
- > Code requirements
- > Designing roofs to resist wind

- > Why wind matters
- > Code requirements
- > Designing roofs to resist wind
 - 3 pathways to success:

- > Why wind matters
- > Code requirements
- > Designing roofs to resist wind
 - 3 pathways to success:
 - ✓ STEP 1: Calculate Specified Wind Loads

- > Why wind matters
- > Code requirements
- > Designing roofs to resist wind
 - 3 pathways to success:
 - ✓ STEP 1: Calculate Specified Wind Loads
 - ✓ STEP 2: Choose path based on type of roof

- > Why wind matters
- > Code requirements
- > Designing roofs to resist wind
 - 3 pathways to success:
 - ✓ STEP 1: Calculate Specified Wind Loads
 - ✓ STEP 2: Choose path based on type of roof
 - ✓ STEP 3: Design the roof securement using a:
 - Tested Assembly
 - Assembly with Proven Past Performance
 - Custom-engineered assembly

Thank you. Any Questions?

